
4 Solution:
Given,
The mass of the truck, $\mathrm{m}=7$ tonnes $=7000 \mathrm{~kg}$
The initial velocity of the truck, $\mathrm{u}=0(\because$ the truck is starting from rest)
The distance covered by the truck, $\mathrm{S}=400 \mathrm{~m}$
Time taken, $\mathrm{t}=20 \mathrm{~s}$
Let the constant acceleration of the truck $\mathrm{be}=\mathrm{a}$
From equations of motion,
S $=u t+1 / 2 \mathrm{at}^{2}$
$\Rightarrow 400=0 \times t+1 / 2 \times 400$
$\Rightarrow a=2 \mathrm{~m} \mathrm{~s}^{-}-2$
$\therefore$ From Newton's second law of motion, the force acting on the truck, $\mathrm{F}=\mathrm{m} \times \mathrm{a}$
$\Rightarrow \mathrm{F}=7000 \times 2=14000 \mathrm{~N}$ or 14 kN
$\therefore$ Acceleration the truck is $2 \mathrm{~m} \mathrm{~s}^{-2}$ and the force acting on the truck is 14000 N or 14 kN .
6. A stone of 1 kg is thrown with a velocity of $20 \mathrm{~ms}-1$ across the frozen surface of a lake and comes to rest after travelling a distance of $\mathbf{5 0} \mathbf{~ m}$. What is the force of friction between the stone and the ice?
Solution:
Given,
The initial velocity of the stone, $u=20 \mathrm{~m} \mathrm{~s}-1$
The final velocity of the stone, $\mathrm{v}=0(\because$ stone is coming to rest after travelling 50 m$)$
Distance covered by the stone before coming to rest $\mathrm{S}=50 \mathrm{~m}$
Let the constant acceleration/retardation of the stone be a
From equations of motion,
$\mathrm{v} 2-\mathrm{u} 2=2 \mathrm{as}$
$\Rightarrow 0^{2}-20^{2}=2 \times a \times 50$
$\Rightarrow a=-400 / 100$
$\Rightarrow \mathrm{a}=-4 \mathrm{~m} \mathrm{~s}-2$
From Newton's second law of motion,
Force of friction acting on the stone $\mathrm{F}=\mathrm{m} \times \mathrm{a}$
$\Rightarrow \mathrm{F}=1 \times(-4)=-4 \mathrm{~N}$
Therefore, friction force acting between the stone and the ice is -4 N
7. A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg , along a horizontal track. If the engine exerts a force of $\mathbf{4 0 0 0 0} \mathrm{N}$ and the track offers a friction force of 5000 N , then calculate: (a) the net accelerating force and (b) the acceleration of the train.

## Solution:

Mass of the train $\mathrm{m}=2000 \times 5=10000 \mathrm{~kg}$
Force exerted by the engine Fengine $=40000 \mathrm{~N}$
Force of friction on the train, Ffriction $=5000 \mathrm{~N}$
Let the acceleration of the train be $=\mathrm{a}$
(a) The net force acting on the train
Fnet $=$ force exerted by the engine - force of friction
$\Rightarrow$ Fnet $=40000-5000=35000 \mathrm{~N}$
(b) From Newton's second law of motion, Fnet $=\mathrm{m} \times \mathrm{a}$
$\Rightarrow 35000=18000 \times \mathrm{a}$
$\Rightarrow a=35000$ According to the third law of motion when we push an object, the object pushes us back with an equal and opposite force. These two forces are called as actionreaction pair. Action and reaction forces never act on the same object. Hence, they never cancel each other. When we push a massive truck parked along the roadside, it will probably not move because applied force might not be strong enough to overcome the friction between the truck and the road. The justification given by the student is wrong.
13. A hockey ball of mass 200 g travelling at $10 \mathrm{~ms}-1$ is struck by hockey stick so as to return it along its original path with a velocity at $5 \mathrm{~ms}-1$. Calculate the magnitude of change of momentum occurred in the motion of the hockey ball by the force applied by the hockey stick.
Solution:
Given
The mass of the hockey ball, $\mathrm{m}=200 \mathrm{~g}=0.2 \mathrm{~kg}$
The initial velocity of the hockey ball, $u=10 \mathrm{~m} \mathrm{~s}^{-1}$
The initial momentum of the hockey ball $\mathrm{Pi}=0.2 \times 10=2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}-1$
The final velocity of the hockey ball, $v=-5 \mathrm{~m} \mathrm{~s}^{-1}$
Final momentum of the hockey ball $\mathrm{Pf}=0.2 \times(-5)=-1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Change in the momentum $\Delta \mathrm{P}=\mathrm{Pf}-\mathrm{Pi}=-1-2=-3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}-1$
$\therefore$ the magnitude of change in momentum is $3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}-1$
14. A bullet of mass 10 g travelling horizontally with a velocity of $150 \mathrm{~ms}-1$ strikes a stationary wooden block and comes to rest in 0.03 s . Calculate the distance of penetration of the bullet into the block. Also, calculate the magnitude of the force exerted by the wooden block on the bullet.

## Solution:

Given
The mass of the bullet $\mathrm{m}=10 \mathrm{~g}=0.01 \mathrm{~kg}$
The initial velocity of the bullet $u=150 \mathrm{~m} \mathrm{~s}^{-1}$
The final velocity of the bullet $v=0$
Time taken for the bullet to come to rest $\mathrm{t}=0.03 \mathrm{~s}$
Assuming the wooden block offers constant retardation during the penetration.
Let $S$ be the distance the bullet covered before it comes to rest and a be the acceleration of it.
From the equation of motion,
$v=u+a t$
$\Rightarrow a=v-u / t$
$\Rightarrow a=0-150 / 0.03=-5000 \mathrm{~m} \mathrm{~s}^{-2}$
And the retardation force exerted by the wooden block $\mathrm{F}=\mathrm{ma}$
$\Rightarrow \mathrm{F}=0.01 \times(-5000)=-50 \mathrm{~N}$
Again, from equations of motion,
$V^{2}-u^{2}=2 a S$
$\Rightarrow S=v^{2}-u^{2} / 2 a$
$\Rightarrow S=0-150^{2} / 2(-5000)=2.25 \mathrm{~m}$
Hence the magnitude of the force exerted by the wooden block is 50 N and the distance of penetration is 2.25 m
15. An object of mass 1 kg travelling in a straight line with a velocity of $10 \mathrm{~ms}-1$ collides with, and sticks to, a stationary wooden block of mass 5 kg . Then they both move off together in the same straight line. Calculate the total momentum just before the impact and just after the impact. Also, calculate the velocity of the combined object.
Solution:
Given,
The mass of the object $\mathrm{m}=1 \mathrm{Kg}$
The initial velocity of the object $u=10 \mathrm{~m} \mathrm{~s}^{-1}$

1. पांच औपचारिक पत्र लिखें।
2. पांच अलग-अलग विषयों पर संवाद लेखन करें ।
3. अपना portfolio बनाएं

पोर्टफोलियो -
नाम
उम
जन्म तिथि
माता का नाम
पिता का नाम
रुचियाँ
उपलब्धियां (achievements )
4. दो आंध्र प्रदेश के और दो पंजाब के प्रसिद्ध संतों के जीवन पर आधारित प्रोजेक्ट बनाएं ।
5. Revise the syllabus of April and May
 लप्टी ते मिॅ̈भा भिलटी चै छुम घग्ठे लिधे ।



5. वेप्टी प्टिव प्टिव हिॅनी, टढ़उठी डे घिते थॅउठ सिभे
6. गेठ सिदे दिमिभिं डे लेख लिभे ।

- पिथव चुँथम मेँभ।
- मभगतिव व्रठीडीभां
- ठवल टी घुठम्पी।

7. गेठ लिदे दिम्ने डे पू'्तैवट घटग्ठ-:


## ARTIFICIAL INTELLIGENCE

1. How AI is used in home automation. Explain with examples.
2. Explain three domains of AI.
3. Give three examples each where DATA, CV, NLP domains are used.

* Solve the given assignment in your assignment notebook.
* Revise the syllabus covered in the month of April and May.
* Do the following activities in your practical notebook.


## Activities

1. To make a square root spiral by using paper folding.
2. To verify the algebraic identity $(a+b)^{3}=a^{3}+b^{3}+3 a 2 b+3 a b^{2}$ geometrically by using sets of unit cubes.
3. To obtain the mirror image of a given geometrical figure with respect to $x$-axis and $y$-axis.
4. To obtain a linear equation and draw a graph which represents the linear equation $(a x+b y+c=0)$
5. To verify that in a triangle, the line joining the mid points of any two sides is parallel to the third side and half of it by paper folding and pasting. (Mid Point Theorem)
6. To verify that the angle subtended by an arc at the centre of circle is double the angle subtended at any point on the remaining part of the circle, experimentally.
7. To show that the angles subtended the chord of a circle in the same segment are equal, experimentally.
8. To verify that angle in a semicircle is a right angel in a major segment is acute; angle in a minor segment is obtuse by paper folding.
9. To show graphically the data collected by the students and to find their mean, median and mode.

- Make any one activity (of your choice) as an art integrated from above 9 activities on A4 sheet separately.


## Assignment

1. Express the following decimals in the form $\frac{p}{q}$.
(a) $0.3 \overline{2}$
(b) $0.12 \overline{3}$
2. Insert 10 rational numbers between $\frac{-3}{11}$ and $\frac{8}{11}$
3. Represent $\sqrt{6}, \sqrt{7}, \sqrt{8}$ on the number line.
4. Evaluate:
(a) $\left(\frac{2}{11}\right)^{4} \times\left(\frac{11}{3}\right)^{2} \times\left(\frac{3}{2}\right)^{3}$
(b) $\left(\frac{64}{25}\right)^{\frac{-3}{2}}$
5. Simplify: $(25)^{\frac{-1}{3}} \times \sqrt[3]{16}$
6. If both ' $a$ ' and ' $b$ ' are rational numbers, find the values of $a$ and $b$.
(a) $\frac{3+\sqrt{7}}{3-\sqrt{7}}=a+b \sqrt{7}$
(b) $\frac{5+\sqrt{3}}{7-4 \sqrt{3}}=47 a+\sqrt{3} b$
7. If $x=2+\sqrt{3}$, find the value of $x^{2}+\frac{1}{x^{2}}$
8. Factorize: $p^{6}-512 q^{6}$
9. Find the remainder when $p(y)=y^{3}+y^{2}+2 y+3$ is divided by $y+2$.
v 10. Find the value of a, if $x-a$ is a factor of $x^{3}-a^{2} x+x+2$.
10. The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.
11. The sides of a triangular field are $41 \mathrm{~m}, 40 \mathrm{~m}$ and 9 m . Find the number of rose beds that can be prepared in the field, if each rose bed on an average needs $900 \mathrm{~cm}^{2}$ space.
12. Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of $\square 7$ per $\mathrm{m}^{2}$.
